
The development and evolution of
Command and Control (C2) systems have
suffered from problems, some great
enough to cause project failures. Two erro-
neous assumptions have contributed to
this situation:
• That contracts can be based on the

premise that a C2 system can be suffi-
ciently known prior to development to
produce complete and high quality
requirements specification.

• That a C2 system is identical to the
automated (computerized) support for
such a system.

What is wrong with these assumptions?
We know from experience that new

knowledge will be gained during C2 sys-
tem development that will cause changes
to the original specification. Areas affected
include system usage, system environ-
ment, system features usefulness, new mis-
sion completion possibilities, etc.

The goal of every C2 system is to com-
plete one or more missions through a
combination of human operator tasks and
automated support. Consequently it is

important to understand how the system
completes its missions and how to manage
human and automated systems in the
same context.

With this in mind, two better assump-
tions would be the following:
• Prior to developing a C2 system, iden-

tify its missions and expect the detailed
requirements to surface during devel-
opment.

• To complete their missions, a C2 sys-
tem requires operators and cooperating
software and hardware.

To fully understand these assumptions, we
need an example.

Dominant Battlefield
Awareness
Dominant battlefield awareness (DBA)
means that a commander in a C2 system
builds an awareness of the battlefield situ-
ation by using many information sources
such as agents, sensors, reports from other
C2 centers, etc. Since DBA is an impor-
tant part of the ongoing revolution in mil-
itary affairs, the mission Build DBA is

selected as an example to study system
management.

Figure 1 shows that if all the informa-
tion required to establish DBA in a real
battle situation is linked directly to the
commander two problems may surface:
• Confusion as a result of depending on

data of different ages, from different
origins, of differing quality, etc.

• Information overload through presen-
tation of more data than is humanly
possible to overview and understand.

The conclusion is that there is more to
building DBA than to present all available
information to the commander.

Connectabilities to the
Mission
Completion of the mission Build DBA
requires a set of abilities. An approach
defining the necessary abilities in connec-
tion with the mission object Build DBA is
shown in Figure 2. The abilities listed are:
• Analyze the situation, including inter-

preting the data in the context of
known behavioral patterns, for units in
the battlefield.

• Collect data from hostile units, includ-
ing sensor, agent, report, and other
data about hostile units.

• Control data processing in building
DBA to support the commander’s
objectives.

• Control presentation(s) of commander
and others involved to support build-
ing necessary awareness.

• Fuse data to avoid double presentation
and enhance information validity.

• Maintain communication ensuring
that all other friendly units’ informa-
tion remains available.

• Present information database for the
commander and others in a C2 unit.

Mission–Based Incremental Development of C2
Systems for More Efficient Business Support

Ingmar Ögren
Tofs Inc.

It is not possible to ever know enough about requirements before developing a Command and Control (C2) system.
Also, a C2 system is never identical to its automated (computerized) parts. This article will introduce you to dom-
inant battlefield awareness (DBA), how it is used to define a mission “Build DBA,” and how abilities are con-
nected to mission completion. Mission supports such as operator role, software, and hardware are used to model a
complete C2 system, including four system levels: reality, computer information, presentation, and mental. The
model is a useful basis for various simulations required during system development and evolution, as well as for
acquisition of system components. Lastly, the possibility of extending the model to cover the domain of C2 systems is
presented along with how that extension can become a basis for more rational production of C2 systems within the
domain.

Figure 1: Dominant Battlefield Awareness Requires Large Amounts of Information

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering October 2001

Confusion
Information
Overload?

October 2001 www.stsc.hill.af.mil 27

• Survey individual unit so that informa-
tion is presented in the battlefield con-
text keeping the commander aware of
the situation.
What is important is that the abilities

required for mission Build DBA can be
seen as actions offered by a mission object,
and consequently drawn in an object
graph as shown in Figure 1.

Support Abilities with
System Components
Now that we have defined a set of abilities,
we need to create a system of components
that actually has these abilities. In Figure
3, the mission object Build DBA is sup-
ported by a set of objects needed to build
the abilities listed above. The support
objects categories are operator (role), soft-
ware, and hardware with examples:
• The “Commander” is an operator role

object.
• The “Person-Machine Interface” and

the “information base manager” are
examples of software objects.

• “Data processing resources” is an
example of a hardware object.
The diagram in Figure 3 is called a tree

graph. It shows the need-lines between the
objects in a system model. The version of
the tree graph shown is drawn in the Tofs
software tool, which also shows comple-
tion status for the different objects as little
clocks.

The Four Knowledge Levels
After building a system outline, you must
consider what really constitutes DBA. The
basic prerequisite is that the commander’s
mental awareness must comply with the
actual battlefield situation.

Figure 4 (see page 28) shows the four
knowledge levels necessary to understand-
ing Build DBA, and which can be seen in
a structured system model as shown above.
The levels from the bottom are:
• The reality level representing battle-

field reality or God’s view.
• The computer information level repre-

senting all the data about the battle-
field situation available in the C2 unit’s
computer system.

• The presentation level representing the
information presented to the comman-
der after data processing and selection.

• The mental level representing the com-
mander’s awareness after the presented
information is combined with his per-
sonal experience and intuition.

It is obvious that the mental level must
comply with the reality level to achieve
DBA. The prerequisites for the required

compliance can be studied in a system
model built as a dependency structure as
shown above.

Incremental Development
with Simulation-Based
Acquisition
As stated above, it is not really possible to
build a qualified C2 system from frozen
requirements specification. Knowledge
will inevitably grow during development,
and some of this new knowledge will
influence the requirements. Experience
supports this insight since all non-trivial
real C2 systems needed updates during
development and repeated updates after
the first delivery.

We conclude the need for an orderly
way to manage changing requirements, to
build and save new knowledge, and to
change the system incrementally, especial-

ly as requirements insight grows and as the
changing environmental situation intro-
duces new requirements.

One way to do this is to use a model,
as outlined above, as a system backbone.
Use simulations to verify the model and
investigate requirements, then let the
model evolve incrementally. It will then be
the system reference and a basis for both
simulations and system component acqui-
sitions.

Figure 5 (see page 28) shows a model
used as a system reference, and how the
model evolves through system increments.
It illustrates how the project starts with an
idea, how documentation can be connected
to the model, and how the model is used as
a basis for both simulations and system
products (acquired components). Note that
not only the system concerned needs to be
simulated, but also its environment.

Figure 2: Military Systems Operational or Being Developed Using the DII COE

Figure 3: A Model Outlined From the Mission Object “Build Dominant Battlefield
Awareness” to Show the Components Needed

The Mission to build “Dominant Battlefield
Awareness” requires a set of abilities, some
of which are listed in the object graph.
At this stage the abilities are only identified
for further discussion and analysis.

The model is built from
the assumption that
systems are best modeled
using the relationship
“depends on”.
The components are of
categories:
• Mission
• Operator (role)
• Software
• Hardware
The “clocks” indicate
completeness status for
each component (object).

Mission-Based Incremental Development of C2 Systems for More Efficient Business Support

Formalize the Model
For a model to be a firm basis for multiple
simulations and various system compo-
nent acquisitions, it is essential that differ-
ent system parts comply with each other
and that the simulations comply with the
system built. For example if the C2 system
is of a non-trivial size, it must be possible
to use a computer to check the model’s
consistency. The conclusion is that the
model must be expressed in a formal syn-
tax. Furthermore, this formal syntax must
be readily understood by all those involved
– developers, end-users, quality people,
etc.

One way to achieve the required for-
mality is to express the model in formal
English using a limited language that
includes:
• Reserved words to express control con-

structs.
• Variables of defined types.
• Comments that are used as explana-

tions and to describe parts of the
model that are not yet formalized.
The interaction between a comman-

der and his Person-Machine Interface

(PMI) to manage surveillance resources
can be modeled as two concurrent pro-
cesses. The commander’s manual process
interacts with the concurrent PMI soft-
ware process through sending and receiv-
ing messages. An example of such a mes-
sage is a presentation of a screen image
that means the PMI has sent a message to
the commander.

Generalize the Model to the
Domain Level
We have discussed how to use a model as
a backbone for incremental development
of C2 systems, and how it obtains compli-
ance between system simulations and sys-
tem implementations. Since the history of
C2 systems includes some reinventing of
the wheel, you may wonder: Can the
modeling technique be used to avoid such
reinvention? Models can be used in com-
bination with so-called domain engineer-
ing to minimize reinvention. A possible
principle is:
• A similar set of C2 systems are ana-

lyzed and used as a basis for a generic
architectural model for the C2 applica-

tion domain. The architectural model
can then be formalized as described
above.

• The analysis result is further used to
identify reusable assets from the exist-
ing C2 systems. These assets are con-
nected to the relevant objects in the
architectural model to prepare for
reuse. Assets may then be, for example,
software modules, requirements, man-
uals, specifications, hardware products,
etc.

• For each new or modified C2 system,
you begin by combining the original
requirements specification with the
domain architecture to create a tailored
version of the domain architecture to
satisfy the specification (possibly mod-
ified after the analysis work).

• As far as possible, the new system is
implemented using assets connected to
the domain architecture. Some com-
ponents will normally have to be devel-
oped anew. These new components
may then be turned into reusable
assets.
The result is an orderly development

process that, provided a number of C2 sys-
tems with some similarities are to be pro-
duced, will decrease cost and development
time and increase quality.

Possible Objections
The principles described above may seem
foreign and objectionable. However, if you
take the Swedish Air Defense C2 system
Stril 60, for example, it evolved from the
early sixties into the nineties. This evolu-
tion was possible through cooperation
within a group of technical and tactical
experts with a good understanding of the
system’s missions, abilities, and structure.
This suggests simply that the well-proven
informal work, based on the informal
understanding within a small expert
group, can be supported by a formalized
and commonly accepted system model.

There may still be objections to the
model-based principle, but these are not
too well founded:
• We use specifications, not models for

acquisitions. Fine, but when you need
more information than can be man-
aged in a textual specification, why not
supplement the written specification
with a computer-based model?

• You cannot model intuition, and our C2
systems depend on the experienced com-
mander’s intuition. This may be true,
but it can still be worthwhile to model
all the routine details of the comman-
der’s interaction with systems for com-

Own forces Enemy forces Reality level

Computer
information
level

Presentation
level

Mental level

These two
must comply
for efficient C2
Total system
modeling can
assist to
achieve the
necessary
compliance

Environment
Simulation

Research
Simulation

Documenta-
tion

(Attribute)

Model

towards new increments

Idea

Prototype
Simulation

System
product

Training
Simulation

with
Environment

Model-based updates of products in each increment

Model and simulation-based acquisition

Figure 5: Using a Model for Iterative Development and Acquisition of C2 Systems

Figure 4: The Four Knowledge Levels and the Necessary Compliance

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 29

puting and communicating in order to
simplify such interaction. The result
may be that the commander pays less
attention to the support systems, con-
sequently getting more time for his
essential creative tasks.

• You must separate tactical application
development from technical acquisition.
Yes, this is traditionally what is done
and may be one reason for experienc-
ing problems with C2 system develop-
ment. A working C2 system requires
smooth cooperation between manual
and automated parts. This smooth
cooperation is best achieved through
modeling the complete system as a sin-
gle structure.

• Computer-based modeling is just an
expensive way to replace documentation.
The computer-based model will be a
good basis for documentation and help
make sure the documentation pro-
duced is really compliant with the sys-
tem built or simulated. Using the
model as a basis for documentation
may consequently decrease documen-
tation costs.

Conclusions
Obviously C2 system evolution should
start from a system’s missions and abilities.
It has been shown that model-based incre-
mental technique for C2 development
work has some advantages:
• Computer-based models can be used

as a common base for simulations,
acquisitions, recruitment, and train-
ing. While each system is too large for
one person to overview, the model will
help ensure that everyone involved
knows his or her work is interconnect-
ed with the rest of the project through
the common model.

• Models can help manage and structure
large amounts of information that are

traditionally stored as paper docu-
ments. This reduces cost and ensures
that available documentation complies
with the current system version or sim-
ulator. Using a model with good con-
figuration management makes manag-
ing that information easier; relevant
information for the current system ver-
sion or simulator is extractable from
the model.

• Models can be used to create a back
bone in incremental development of
C2 systems. Since the model lies
behind each system version and simu
lator built to support development and
training, it is a backbone for the devel
opment and reengineering work. This
will help ensure that different system
versions and simulators really comply
with each other.

In summary, model-based develop-
ment and evolution means that well-
proven principles are formalized and
extended to cover larger systems with less
dependence on expert groups.u

Figure 7: Principles for Creating and Using a Domain Model

PMI software behavior

Commander’s behavior
begin

send Get_map(current_area)
receive Present_map(current_area)
receive Present_surveillance_resources(available_resources)
for resource in 1..total_resource loop

send Select_resource(resource_id)
receive Present_adjustment(possible_adjustment)
send Adjust(current_adjustment)

end loop
end

begin
while Commander_messages_received loop

receive Get_map(area)
Support_software.Get_area_map
send Present_map(area)
send Present_surveillance_resources(area)
{The map information collected from the support software includes
information about surveillance resources availabe in the area selected}
receive Select_resource(Resource_id)
send Present_adjustment(Possible_adjustment)
{For each surveillance resource possible adjustment is received together
with the map information}
receive Adjust(Current_adjustment)
Data_collection_own.Adjust_data_collection
{The surveilance resource concerned is adjusted as required}

end loop
end

Figure 6: Formalization of the Interaction Between a Commander and His
Person-Machine Interface to Manage Surveillance Resources

C2 system
C2 systemC2 system

Architectural
model for the
Command &
Control
domain

Reusable asset
Reusable assetReusable asset

Requirements
for new C2
system

Tailored
system
architecture

New asset
development

Mission-Based Incremental Development of C2 Systems for More Efficient Business Support

About the Author
Ingmar Ögren has a mas-
ter’s of science in elec-
tronics from the Royal
University of Technology
in Stockholm. He has
worked with the Swedish
Defense Material Admi-

nistration and various consulting compa-
nies in systems engineering tasks associat-
ed with communications, aircraft, and
command and control. He is currently
partner and chairman of the board for
Tofs Inc. and Romet, a systems engineer-
ing consulting company mainly utilizing
method O4S. He also teaches systems and
software engineering. Ögren is a member
of Modeling and Simulation in Sweden
and International Council Of Systems
Engineering.

Tofs AB
Fridhem 2
S-76040 Veddoe, Sweden
Phone: (+46) 176-54580,
Fax: (+46) 176-54441
E-mail: iog@toolforsystems.com

